Computing Igusa Class Polynomials via the Chinese Remainder Theorem

نویسنده

  • KIRSTEN EISENTRÄGER
چکیده

We present a new method for computing the Igusa class polynomials of a primitive quartic CM field. For a primitive quartic CM field, K, we compute the Igusa class polynomials modulo p for certain small primes p and then use the Chinese remainder theorem and a bound on the denominators to construct the class polynomials. We also provide an algorithm for determining endomorphism rings of Jacobians of genus 2 curves. Our algorithm can be used to generate genus 2 curves over a finite field Fn with a given zeta function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simplified setting for discrete logarithms in small characteristic finite fields

We present an algorithm for constructing genus 2 curves over a finite field with a given number of points on its Jacobian. This has important applications in cryptography, where groups of prime order are used as the basis for discrete-log based cryptosystems. For a quartic CM field K with primitive CM type, we compute the Igusa class polynomials modulo p for certain small primes p and then use ...

متن کامل

Computing endomorphism rings of Jacobians of genus 2 curves over finite fields

We present algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present probabilistic algorithms for computing the field of definition of, and the action of Frobenius on, the subgroups J [l] for prime powers l. We use these algorithms to ...

متن کامل

Computing Hilbert class polynomials with the Chinese remainder theorem

We present a space-efficient algorithm to compute the Hilbert class polynomial HD(X) modulo a positive integer P , based on an explicit form of the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis, the algorithm uses O(|D|1/2+ log P ) space and has an expected running time of O(|D|1+ ). We describe practical optimizations that allow us to handle larger discriminants than othe...

متن کامل

Kineski teorem o ostatcima za polinome

We start by giving a brief description of the classical Chinese remainder theorem for integers, after whichwe define the greatest common divisor of two polynomials and congruences modulo a polynomial. These concepts allow us to state and prove the Chinese remainder theorem for polynomials. After presenting some important consequences of that theorem, we give its applications to the factorizatio...

متن کامل

Computing Class Polynomials for Abelian Surfaces

We describe a quasi-linear algorithm for computing Igusa class polynomials of Jacobians of genus 2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Dupont for evaluating θconstants in quasi-linear time using Newton iterations on the Borchardt mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005